diff --git a/.github/workflows/release-webhook.yml b/.github/workflows/release-webhook.yml index 6fceb7560ecf..737e4c488ba4 100644 --- a/.github/workflows/release-webhook.yml +++ b/.github/workflows/release-webhook.yml @@ -7,6 +7,8 @@ on: jobs: send-webhook: runs-on: ubuntu-latest + env: + DESKTOP_REPO_DISPATCH_TOKEN: ${{ secrets.DESKTOP_REPO_DISPATCH_TOKEN }} steps: - name: Send release webhook env: @@ -106,3 +108,37 @@ jobs: --fail --silent --show-error echo "✅ Release webhook sent successfully" + + - name: Send repository dispatch to desktop + env: + DISPATCH_TOKEN: ${{ env.DESKTOP_REPO_DISPATCH_TOKEN }} + RELEASE_TAG: ${{ github.event.release.tag_name }} + RELEASE_URL: ${{ github.event.release.html_url }} + run: | + set -euo pipefail + + if [ -z "${DISPATCH_TOKEN:-}" ]; then + echo "::error::DESKTOP_REPO_DISPATCH_TOKEN is required but not set." + exit 1 + fi + + PAYLOAD="$(jq -n \ + --arg release_tag "$RELEASE_TAG" \ + --arg release_url "$RELEASE_URL" \ + '{ + event_type: "comfyui_release_published", + client_payload: { + release_tag: $release_tag, + release_url: $release_url + } + }')" + + curl -fsSL \ + -X POST \ + -H "Accept: application/vnd.github+json" \ + -H "Content-Type: application/json" \ + -H "Authorization: Bearer ${DISPATCH_TOKEN}" \ + https://api.github.com/repos/Comfy-Org/desktop/dispatches \ + -d "$PAYLOAD" + + echo "✅ Dispatched ComfyUI release ${RELEASE_TAG} to Comfy-Org/desktop" diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index c0c51d51a252..6978eb717464 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -1,12 +1,11 @@ import math -import time from functools import partial from scipy import integrate import torch from torch import nn import torchsde -from tqdm.auto import trange as trange_, tqdm +from tqdm.auto import tqdm from . import utils from . import deis @@ -15,34 +14,7 @@ import comfy.model_sampling import comfy.memory_management - - -def trange(*args, **kwargs): - if comfy.memory_management.aimdo_allocator is None: - return trange_(*args, **kwargs) - - pbar = trange_(*args, **kwargs, smoothing=1.0) - pbar._i = 0 - pbar.set_postfix_str(" Model Initializing ... ") - - _update = pbar.update - - def warmup_update(n=1): - pbar._i += 1 - if pbar._i == 1: - pbar.i1_time = time.time() - pbar.set_postfix_str(" Model Initialization complete! ") - elif pbar._i == 2: - #bring forward the effective start time based the the diff between first and second iteration - #to attempt to remove load overhead from the final step rate estimate. - pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time) - pbar.set_postfix_str("") - - _update(n) - - pbar.update = warmup_update - return pbar - +from comfy.utils import model_trange as trange def append_zero(x): return torch.cat([x, x.new_zeros([1])]) diff --git a/comfy/model_management.py b/comfy/model_management.py index 304931eb0cef..38c3e482b834 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1213,8 +1213,12 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str signature = comfy_aimdo.model_vbar.vbar_fault(weight._v) if signature is not None: - v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0] - if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature): + if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature): + v_tensor = weight._v_tensor + else: + raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device) + v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0] + weight._v_tensor = v_tensor weight._v_signature = signature #Send it over v_tensor.copy_(weight, non_blocking=non_blocking) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 19c9031ea083..f278fccacd81 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -1525,7 +1525,7 @@ def setup_param(self, m, n, param_key): setattr(m, param_key + "_function", weight_function) geometry = weight if not isinstance(weight, QuantizedTensor): - model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype) + model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype weight._model_dtype = model_dtype geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype) return comfy.memory_management.vram_aligned_size(geometry) @@ -1542,7 +1542,6 @@ def setup_param(self, m, n, param_key): if vbar is not None and not hasattr(m, "_v"): m._v = vbar.alloc(v_weight_size) - m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to) allocated_size += v_weight_size else: @@ -1552,12 +1551,11 @@ def setup_param(self, m, n, param_key): weight.seed_key = key set_dirty(weight, dirty) geometry = weight - model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype) + model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype) weight_size = geometry.numel() * geometry.element_size() if vbar is not None and not hasattr(weight, "_v"): weight._v = vbar.alloc(weight_size) - weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to) weight._model_dtype = model_dtype allocated_size += weight_size vbar.set_watermark_limit(allocated_size) diff --git a/comfy/ops.py b/comfy/ops.py index 33803b223f6b..688937e436c3 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -83,14 +83,18 @@ def cast_to_input(weight, input, non_blocking=False, copy=True): def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype): offload_stream = None xfer_dest = None - cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ]) signature = comfy_aimdo.model_vbar.vbar_fault(s._v) - if signature is not None: - xfer_dest = s._v_tensor resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature) + if signature is not None: + if resident: + weight = s._v_weight + bias = s._v_bias + else: + xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device) if not resident: + cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ]) cast_dest = None xfer_source = [ s.weight, s.bias ] @@ -140,9 +144,13 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu post_cast.copy_(pre_cast) xfer_dest = cast_dest - params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest) - weight = params[0] - bias = params[1] + params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest) + weight = params[0] + bias = params[1] + if signature is not None: + s._v_weight = weight + s._v_bias = bias + s._v_signature=signature def post_cast(s, param_key, x, dtype, resident, update_weight): lowvram_fn = getattr(s, param_key + "_lowvram_function", None) @@ -182,7 +190,6 @@ def to_dequant(tensor, dtype): weight = post_cast(s, "weight", weight, dtype, resident, update_weight) if s.bias is not None: bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight) - s._v_signature=signature #FIXME: weird offload return protocol return weight, bias, (offload_stream, device if signature is not None else None, None) diff --git a/comfy/text_encoders/ace15.py b/comfy/text_encoders/ace15.py index 73697b3c1c17..b8198a82017e 100644 --- a/comfy/text_encoders/ace15.py +++ b/comfy/text_encoders/ace15.py @@ -3,7 +3,6 @@ from comfy import sd1_clip import torch import math -from tqdm.auto import trange import yaml import comfy.utils @@ -52,7 +51,7 @@ def sample_manual_loop_no_classes( progress_bar = comfy.utils.ProgressBar(max_new_tokens) - for step in trange(max_new_tokens, desc="LM sampling"): + for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"): outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values) next_token_logits = model.transformer.logits(outputs[0])[:, -1] past_key_values = outputs[2] diff --git a/comfy/utils.py b/comfy/utils.py index edd80cebe606..e0a94e2e1a02 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -27,6 +27,7 @@ import logging import itertools from torch.nn.functional import interpolate +from tqdm.auto import trange from einops import rearrange from comfy.cli_args import args, enables_dynamic_vram import json @@ -1155,6 +1156,32 @@ def mult_list_upscale(a): def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar) +def model_trange(*args, **kwargs): + if comfy.memory_management.aimdo_allocator is None: + return trange(*args, **kwargs) + + pbar = trange(*args, **kwargs, smoothing=1.0) + pbar._i = 0 + pbar.set_postfix_str(" Model Initializing ... ") + + _update = pbar.update + + def warmup_update(n=1): + pbar._i += 1 + if pbar._i == 1: + pbar.i1_time = time.time() + pbar.set_postfix_str(" Model Initialization complete! ") + elif pbar._i == 2: + #bring forward the effective start time based the the diff between first and second iteration + #to attempt to remove load overhead from the final step rate estimate. + pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time) + pbar.set_postfix_str("") + + _update(n) + + pbar.update = warmup_update + return pbar + PROGRESS_BAR_ENABLED = True def set_progress_bar_enabled(enabled): global PROGRESS_BAR_ENABLED diff --git a/comfy_api_nodes/nodes_magnific.py b/comfy_api_nodes/nodes_magnific.py index 013e71cc8f43..83a581c5d7a4 100644 --- a/comfy_api_nodes/nodes_magnific.py +++ b/comfy_api_nodes/nodes_magnific.py @@ -30,6 +30,30 @@ validate_image_dimensions, ) +_EUR_TO_USD = 1.19 + + +def _tier_price_eur(megapixels: float) -> float: + """Price in EUR for a single Magnific upscaling step based on input megapixels.""" + if megapixels <= 1.3: + return 0.143 + if megapixels <= 3.0: + return 0.286 + if megapixels <= 6.4: + return 0.429 + return 1.716 + + +def _calculate_magnific_upscale_price_usd(width: int, height: int, scale: int) -> float: + """Calculate total Magnific upscale price in USD for given input dimensions and scale factor.""" + num_steps = int(math.log2(scale)) + total_eur = 0.0 + pixels = width * height + for _ in range(num_steps): + total_eur += _tier_price_eur(pixels / 1_000_000) + pixels *= 4 + return round(total_eur * _EUR_TO_USD, 2) + class MagnificImageUpscalerCreativeNode(IO.ComfyNode): @classmethod @@ -103,11 +127,20 @@ def define_schema(cls): ], is_api_node=True, price_badge=IO.PriceBadge( - depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]), + depends_on=IO.PriceBadgeDepends(widgets=["scale_factor", "auto_downscale"]), expr=""" ( - $max := widgets.scale_factor = "2x" ? 1.326 : 1.657; - {"type": "range_usd", "min_usd": 0.11, "max_usd": $max} + $ad := widgets.auto_downscale; + $mins := $ad + ? {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.515} + : {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844}; + $maxs := {"2x": 0.515, "4x": 0.844, "8x": 1.015, "16x": 1.187}; + { + "type": "range_usd", + "min_usd": $lookup($mins, widgets.scale_factor), + "max_usd": $lookup($maxs, widgets.scale_factor), + "format": { "approximate": true } + } ) """, ), @@ -168,6 +201,10 @@ async def execute( f"Use a smaller input image or lower scale factor." ) + final_height, final_width = get_image_dimensions(image) + actual_scale = int(scale_factor.rstrip("x")) + price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, actual_scale) + initial_res = await sync_op( cls, ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"), @@ -189,6 +226,7 @@ async def execute( ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"), response_model=TaskResponse, status_extractor=lambda x: x.status, + price_extractor=lambda _: price_usd, poll_interval=10.0, max_poll_attempts=480, ) @@ -257,8 +295,14 @@ def define_schema(cls): depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]), expr=""" ( - $max := widgets.scale_factor = "2x" ? 1.326 : 1.657; - {"type": "range_usd", "min_usd": 0.11, "max_usd": $max} + $mins := {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844}; + $maxs := {"2x": 2.045, "4x": 2.545, "8x": 2.889, "16x": 3.06}; + { + "type": "range_usd", + "min_usd": $lookup($mins, widgets.scale_factor), + "max_usd": $lookup($maxs, widgets.scale_factor), + "format": { "approximate": true } + } ) """, ), @@ -321,6 +365,9 @@ async def execute( f"Use a smaller input image or lower scale factor." ) + final_height, final_width = get_image_dimensions(image) + price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, requested_scale) + initial_res = await sync_op( cls, ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"), @@ -339,6 +386,7 @@ async def execute( ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"), response_model=TaskResponse, status_extractor=lambda x: x.status, + price_extractor=lambda _: price_usd, poll_interval=10.0, max_poll_attempts=480, ) @@ -877,8 +925,8 @@ class MagnificExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ - # MagnificImageUpscalerCreativeNode, - # MagnificImageUpscalerPreciseV2Node, + MagnificImageUpscalerCreativeNode, + MagnificImageUpscalerPreciseV2Node, MagnificImageStyleTransferNode, MagnificImageRelightNode, MagnificImageSkinEnhancerNode, diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index 8a12595068c1..391748e7a04a 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -143,9 +143,9 @@ async def poll_op( poll_interval: float = 5.0, max_poll_attempts: int = 160, timeout_per_poll: float = 120.0, - max_retries_per_poll: int = 3, + max_retries_per_poll: int = 10, retry_delay_per_poll: float = 1.0, - retry_backoff_per_poll: float = 2.0, + retry_backoff_per_poll: float = 1.4, estimated_duration: int | None = None, cancel_endpoint: ApiEndpoint | None = None, cancel_timeout: float = 10.0, @@ -240,9 +240,9 @@ async def poll_op_raw( poll_interval: float = 5.0, max_poll_attempts: int = 160, timeout_per_poll: float = 120.0, - max_retries_per_poll: int = 3, + max_retries_per_poll: int = 10, retry_delay_per_poll: float = 1.0, - retry_backoff_per_poll: float = 2.0, + retry_backoff_per_poll: float = 1.4, estimated_duration: int | None = None, cancel_endpoint: ApiEndpoint | None = None, cancel_timeout: float = 10.0,