@@ -63,7 +63,7 @@ Choosing a profiler
6363
6464For most performance analysis, use the statistical profiler
6565(:mod: `profiling.sampling `). It has minimal overhead, works for both development
66- and production, and provides rich visualization options including flamegraphs ,
66+ and production, and provides rich visualization options including flame graphs ,
6767heatmaps, GIL analysis, and more.
6868
6969Use the deterministic profiler (:mod: `profiling.tracing `) when you need **exact
@@ -81,7 +81,7 @@ The following table summarizes the key differences:
8181+--------------------+------------------------------+------------------------------+
8282| **Accuracy ** | Statistical estimate | Exact call counts |
8383+--------------------+------------------------------+------------------------------+
84- | **Output formats ** | pstats, flamegraph , heatmap, | pstats |
84+ | **Output formats ** | pstats, flame graph , heatmap,| pstats |
8585| | gecko, collapsed | |
8686+--------------------+------------------------------+------------------------------+
8787| **Profiling modes**| Wall-clock, CPU, GIL | Wall-clock |
@@ -103,7 +103,7 @@ performance analysis tasks. Use it the same way you would use
103103
104104One of the main strengths of the sampling profiler is its variety of output
105105formats. Beyond traditional pstats tables, it can generate interactive
106- flamegraphs that visualize call hierarchies, line-level source heatmaps that
106+ flame graphs that visualize call hierarchies, line-level source heatmaps that
107107show exactly where time is spent in your code, and Firefox Profiler output for
108108timeline-based analysis.
109109
@@ -157,7 +157,7 @@ command::
157157 python -m profiling.sampling run -m mypackage.module
158158
159159This runs the script under the profiler and prints a summary of where time was
160- spent. For an interactive flamegraph ::
160+ spent. For an interactive flame graph ::
161161
162162 python -m profiling.sampling run --flamegraph script.py
163163
@@ -197,7 +197,7 @@ Understanding profile output
197197
198198Both profilers collect function-level statistics, though they present them in
199199different formats. The sampling profiler offers multiple visualizations
200- (flamegraphs , heatmaps, Firefox Profiler, pstats tables), while the
200+ (flame graphs , heatmaps, Firefox Profiler, pstats tables), while the
201201deterministic profiler produces pstats-compatible output. Regardless of format,
202202the underlying concepts are the same.
203203
@@ -226,7 +226,7 @@ Key profiling concepts:
226226
227227**Caller/Callee relationships **
228228 Which functions called a given function (callers) and which functions it
229- called (callees). Flamegraphs visualize this as nested rectangles; pstats
229+ called (callees). Flame graphs visualize this as nested rectangles; pstats
230230 can display it via the :meth: `~pstats.Stats.print_callers ` and
231231 :meth: `~pstats.Stats.print_callees ` methods.
232232
@@ -248,7 +248,7 @@ continue to work without modification in all future Python versions.
248248.. seealso ::
249249
250250 :mod: `profiling.sampling `
251- Statistical sampling profiler with flamegraphs , heatmaps, and GIL analysis.
251+ Statistical sampling profiler with flame graphs , heatmaps, and GIL analysis.
252252 Recommended for most users.
253253
254254 :mod: `profiling.tracing `
0 commit comments