Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions comfy/ldm/anima/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,8 +195,20 @@ def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.llm_adapter = LLMAdapter(device=kwargs.get("device"), dtype=kwargs.get("dtype"), operations=kwargs.get("operations"))

def preprocess_text_embeds(self, text_embeds, text_ids):
def preprocess_text_embeds(self, text_embeds, text_ids, t5xxl_weights=None):
if text_ids is not None:
return self.llm_adapter(text_embeds, text_ids)
out = self.llm_adapter(text_embeds, text_ids)
if t5xxl_weights is not None:
out = out * t5xxl_weights

if out.shape[1] < 512:
out = torch.nn.functional.pad(out, (0, 0, 0, 512 - out.shape[1]))
return out
else:
return text_embeds

def forward(self, x, timesteps, context, **kwargs):
t5xxl_ids = kwargs.pop("t5xxl_ids", None)
if t5xxl_ids is not None:
context = self.preprocess_text_embeds(context, t5xxl_ids, t5xxl_weights=kwargs.pop("t5xxl_weights", None))
return super().forward(x, timesteps, context, **kwargs)
39 changes: 27 additions & 12 deletions comfy/ldm/flux/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,19 +29,34 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
return out.to(dtype=torch.float32, device=pos.device)


def _apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)

x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])

return x_out.reshape(*x.shape).type_as(x)


def _apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)


try:
import comfy.quant_ops
apply_rope = comfy.quant_ops.ck.apply_rope
apply_rope1 = comfy.quant_ops.ck.apply_rope1
q_apply_rope = comfy.quant_ops.ck.apply_rope
q_apply_rope1 = comfy.quant_ops.ck.apply_rope1
def apply_rope(xq, xk, freqs_cis):
if comfy.model_management.in_training:
return _apply_rope(xq, xk, freqs_cis)
else:
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
def apply_rope1(x, freqs_cis):
if comfy.model_management.in_training:
return _apply_rope1(x, freqs_cis)
else:
return q_apply_rope1(x, freqs_cis)
except:
logging.warning("No comfy kitchen, using old apply_rope functions.")
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)

x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])

return x_out.reshape(*x.shape).type_as(x)

def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
apply_rope = _apply_rope
apply_rope1 = _apply_rope1
12 changes: 8 additions & 4 deletions comfy/model_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1160,12 +1160,16 @@ def extra_conds(self, **kwargs):
device = kwargs["device"]
if cross_attn is not None:
if t5xxl_ids is not None:
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.unsqueeze(0).to(device=device))
if t5xxl_weights is not None:
cross_attn *= t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
t5xxl_weights = t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
t5xxl_ids = t5xxl_ids.unsqueeze(0)

if torch.is_inference_mode_enabled(): # if not we are training
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.to(device=device), t5xxl_weights=t5xxl_weights.to(device=device, dtype=self.get_dtype()))
else:
out['t5xxl_ids'] = comfy.conds.CONDRegular(t5xxl_ids)
out['t5xxl_weights'] = comfy.conds.CONDRegular(t5xxl_weights)

if cross_attn.shape[1] < 512:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, 0, 512 - cross_attn.shape[1]))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out

Expand Down
5 changes: 5 additions & 0 deletions comfy/model_management.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,11 @@ class CPUState(Enum):

total_vram = 0


# Training Related State
in_training = False


def get_supported_float8_types():
float8_types = []
try:
Expand Down
16 changes: 11 additions & 5 deletions comfy/sampler_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,20 +122,26 @@ def estimate_memory(model, noise_shape, conds):
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required

def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load, force_offload=force_offload)

def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load)
if force_offload: # In training + offload enabled, we want to force prepare sampling to trigger partial load
memory_required = 1e20
minimum_memory_required = None
else:
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
memory_required += inference_memory
minimum_memory_required += inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
real_model = model.model

return real_model, conds, models
Expand Down
20 changes: 12 additions & 8 deletions comfy/weight_adapter/bypass.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import torch
import torch.nn as nn

import comfy.model_management
from .base import WeightAdapterBase, WeightAdapterTrainBase
from comfy.patcher_extension import PatcherInjection

Expand Down Expand Up @@ -181,18 +182,21 @@ def inject(self):
)
return # Already injected

# Move adapter weights to module's device to avoid CPU-GPU transfer on every forward
device = None
# Move adapter weights to compute device (GPU)
# Use get_torch_device() instead of module.weight.device because
# with offloading, module weights may be on CPU while compute happens on GPU
device = comfy.model_management.get_torch_device()

# Get dtype from module weight if available
dtype = None
if hasattr(self.module, "weight") and self.module.weight is not None:
device = self.module.weight.device
dtype = self.module.weight.dtype
elif hasattr(self.module, "W_q"): # Quantized layers might use different attr
device = self.module.W_q.device
dtype = self.module.W_q.dtype

if device is not None:
self._move_adapter_weights_to_device(device, dtype)
# Only use dtype if it's a standard float type, not quantized
if dtype is not None and dtype not in (torch.float32, torch.float16, torch.bfloat16):
dtype = None

self._move_adapter_weights_to_device(device, dtype)

self.original_forward = self.module.forward
self.module.forward = self._bypass_forward
Expand Down
15 changes: 15 additions & 0 deletions comfy_api/latest/_input/video_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,21 @@ def save_to(
"""
pass

@abstractmethod
def as_trimmed(
self,
start_time: float | None = None,
duration: float | None = None,
strict_duration: bool = False,
) -> VideoInput | None:
"""
Create a new VideoInput which is trimmed to have the corresponding start_time and duration

Returns:
A new VideoInput, or None if the result would have negative duration
"""
pass

def get_stream_source(self) -> Union[str, io.BytesIO]:
"""
Get a streamable source for the video. This allows processing without
Expand Down
Loading
Loading